期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Intelligent Control and Automation. 2025; 1: (1) ; 14-17 ; DOI: 10.12208/j.ica.20250004.

A comparison of automated corrective feedback and traditional corrective feedback: a review study
自动纠正反馈与传统纠正反馈的比较:回顾性研究

作者: Yueqian Liu *

马来西亚世纪大学教育、语言、心理学与音乐学部院 马来西亚

*通讯作者: Yueqian Liu,单位:马来西亚世纪大学教育、语言、心理学与音乐学部院 马来西亚;

发布时间: 2025-08-20 总浏览量: 108

摘要

纠正反馈(CF)通常用于帮助语言学习者识别和纠正其口语或书面语中的错误。本文中的传统 CF指的是教师反馈、同伴反馈和自我反馈。自动纠正反馈 (ACF)是指使用技术,特别是人工智能 (AI) 系统,为学习者提供对其表现或工作的反馈。本文通过基于反馈响应时间、潜在风险、人际互动和个性化学习四个方面的综述,比较了 ACF 和传统 CF,旨在帮助教师理解技术工具的使用并提高学习者的英语水平。ACF具有即时响应时间、最小情感伤害和个性化反馈的优势。而传统CF具有实时人际互动且无需担心隐私泄露的优势。建议将两种反馈模式结合起来,以提高语言学习的有效性和效率。

关键词: 自动纠错反馈(ACF);传统纠错反馈;英语教学与学习;评论

Abstract

Corrective feedback (CF) is often used to help language learners identify and correct errors in their spoken or written language. Traditional CF in this paper refers to teacher feedback, peer feedback, and self-feedback. Automated corrective feedback (ACF) indicates the use of technology, specifically artificial intelligence (AI) systems, to provide feedback to learners on their performance or work. This paper compared ACF and traditional CF through a review based on these four aspects: response time of feedback, potential risks, interpersonal interaction, and personalized learning, aiming to assist teachers in comprehending the use of technical tools and enhancing learners' English proficiency. ACF has the benefits of instant response time, minimal emotional damage, and individualized feedback. Whereas traditional CF has the benefits of real-time interpersonal interaction and no concerns about privacy exposure. It is recommended to combine the two modes of feedback so as to enhance the effectiveness and efficiency of language learning.

Key words: Automated corrective feedback (ACF); Traditional corrective feedback; English language teaching and learning; Review

参考文献 References

[1] El Shazly, R. (2021). Effects of artificial intelligence on English speaking anxiety and speaking performance: A case study. Expert Systems, 38(3). https://doi.org/10.1111/exsy.12667.

[2] Fryer, L. K., Ainley, M., Thompson, A., Gibson, A., & Sherlock, Z. (2017). Stimulating and sustaining interest in a language course: An experimental comparison of Chatbot and Human task partners. Computers in Human Behavior, 75, 461-468. https://doi.org/10.1016/j.chb.2017.05.045.

[3] Fu, Q.-K., Zou, D., Xie, H., & Cheng, G. (2022). A review of AWE feedback: Types, learning outcomes, and implications. Computer Assisted Language Learning, 1-43. https://doi.org/10.1080/09588221.2022.2033787.

[4] Golonka, E. M., Bowles, A. R., Frank, V. M., Richardson, D. L., & Freynik, S. (2014). Technologies for foreign language learning: A review of technology types and their effectiveness. Computer Assisted Language Learning, 27(1), 70-105.

https://doi.org/10.1080/09588221.2012.700315.

[5] Ha, Q.-A., Chen, J. V., Uy, H. U., & Capistrano, E. P. (2021). Exploring the Privacy Concerns in Using Intelligent Virtual Assistants under Perspectives of Information Sensitivity and Anthropomorphism. International Journal of Human–Computer Interaction, 37(6), 512-527. https://doi.org/10.1080/10447318.2020.1834728.

[6] Ha, X. V., Murray, J. C., & Riazi, A. M. (2021). High school EFL students’ beliefs about oral corrective feedback: The role of gender, motivation and extraversion. Studies in Second Language Learning and Teaching, 11(2), 235-264.

https://doi.org/10.14746/ssllt.2021.11.2.4.

[7] Hamed Mahvelati, E. (2021). Learners’ perceptions and performance under peer versus teacher corrective feedback conditions. Studies in Educational Evaluation, 70, 100995. https://doi.org/10.1016/j.stueduc.2021.100995.

[8] Heift, T., & Hegelheimer, V. (2017). Computer-Assisted Corrective Feedback and Language Learning. In Corrective feedback in second language teaching and learning (pp. 51-65). Routledge.

[9] Krashen, S. D. (1982). Principles and practice in second language acquisition (1st ed). Pergamon.

[10] Quinn, P. G., & Nakata, T. (2017). The Timing of Oral Corrective Feedback. In Corrective feedback in second language teaching and learning (pp. 35-47). Routledge.

[11] Sato, M. (2017). Oral Peer Corrective Feedback Multiple Theoretical Perspectives. In Corrective feedback in second language teaching and learning (pp. 19-34). Routledge.

[12] Shadiev, R., & Feng, Y. (2023). Using automated corrective feedback tools in language learning: A review study. Interactive Learning Environments, 1-29. https://doi.org/10.1080/10494820.2022.2153145.

[13] Shang, H.-F. (2022). Exploring online peer feedback and automated corrective feedback on EFL writing performance. Interactive Learning Environments, 30(1), 4-16. https://doi.org/10.1080/10494820.2019.1629601.

[14] Sheen, Y. (2011). Pedagogical Perspectives on Corrective Feedback. In Y. Sheen, Corrective Feedback, Individual Differences and Second Language Learning (Vol. 13, pp. 39-51). Springer Netherlands. https://doi.org/10.1007/978-94-007-0548-7_3.

[15] Tafazoli, D., & Gómez-Parra, M. E. (2017). Robot-Assisted Language Learning: Artificial Intelligence in Second Language Acquisition. In F. Nassiri-Mofakham (Ed.), Current and Future Developments in Artificial Intelligence (pp. 370-396). Bentham Science Publishers. https://doi.org/10.2174/9781681085029117010015.

引用本文

YueqianLiu, 自动纠正反馈与传统纠正反馈的比较:回顾性研究[J]. 智能控制与自动化, 2025; 1: (1) : 14-17.